

Thermodynamic study of syngas combustion in gas microturbines with regeneration composed with metallic and ceramic materials

Jordan Amaro¹, Andrés Z. Mendiburu², João A. de Carvalho Jr¹ ¹São Paulo State University (UNESP), ²Federal University of Rio Grande do Sul

Abstract

The objective of this research is to carry out an energetic evaluation of syngas combustion in gas microturbines with regenerators made with two different types of material: metallic or ceramic. A modified chemical equilibrium model was used to calculate syngas composition obtained from sugarcane bagasse gasification in a fluidized bed gasifier using steam as gasifying agent. For the gas microturbines with a regenerator of metallic materials, combustion temperatures of 850, 900, and 950 °C were established; and for those with a regenerator of ceramic materials, combustion temperatures of 1150, 1250, and 1350 °C were established. The range for the compression ratio was 2 to 6, and the excess air percentages employed were 400, 500, and 600%. Excellent results were obtained: maximum power ratio was 1.87 kWh/Nm3, maximum cycle efficiency was 57%, and maximum regenerator effectiveness was 100%. Thus, syngas combustion performance in the gas microturbines with regeneration was excellent.

Keywords: power generation, gas microturbines with regeneration, syngas.

Referencias Bibliográficas:

- [1] Sommers, A., Wang, Q., Han, X., T'Joen, C., Park, Y., Jacobi, A. (2010). Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems-A review. *Applied Thermal Engineering*, 30, 1277–1291. https://www.sciencedirect.com/science/article/abs/pii/S1359431110000773.
- [2] Mendiburu, A. Z., Roberts, J. J., Carvalho, J. A. Jr., Silveira, J. L. (2014). Thermodynamic analysis and comparison of downdraft gasifiers integrated with gas turbine, spark and compression ignition engines for distributed power generation. *Applied Thermal Engineering*, 66, 290–297.

https://www.sciencedirect.com/science/article/abs/pii/S1359431114001173?via%3Dihub.

- [3] McDonald, C. F. (2003). Recuperator considerations for future higher efficiency microturbines. *Applied Thermal Engineering*, 23, 1463–1487. https://www.sciencedirect.com/science/article/abs/pii/S1359431103000838.
- [4] McDonald, C. F., Rodgers, C. (2008). Small recuperated ceramic microturbine demonstrator concept. Applied Thermal Engineering, 28, 60–74. https://www.sciencedirect.com/science/article/abs/pii/S1359431107000609.
- [5] Amaro, J., Mendiburu, A. Z, Ávila, I. (2018). Modeling of syngas composition obtained from fluidized bed gasifiers using Kuhn–Tucker multipliers. *Energy*, 152, 371–382.

https://www.sciencedirect.com/science/article/abs/pii/S0360544218305504.

Email:

¹jordan.amaro.gutierrez7@gmail.com ²andresmendiburu@ufrgs.br ³ja.carvalho@unesp.br